Reinforcement Effect on Mechanical Properties of Bio-fiber Composite

نویسنده

  • S Thirumalini
چکیده

Influence of reinforcement effect on mechanical properties of banana bio fiber polyester has been investigated. Three different type of weaving patterns such as plain, basket and twill banana fabric were used to analyze the mechanical properties of composites. Results revealed that composite with basket weaving style enhances the properties of composite material compared to other two patterns. Further, same weight percentage of banana fiber was reinforced in the polyester matrix with random orientation. Three different lengths (3 mm, 4mm and 5 mm) have been employed to analyze the influence of random orientation of composites mechanical properties compared to woven reinforcement. Results depicted that composite with woven reinforcement enhances the properties of composites compared to short fiber with random orientation. Reason is woven fiber reinforcement enhances the young’s modulus of composite laminate which offers more resistance against deformation and transfer stress uniformly from reinforcement to matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Redmud Particulates on Mechanical Properties of BFRP Composites (TECHNICAL NOTE)

This article reports the effective usage of redmud(RM) an industrial waste ,as a  novel filler in polymer matrix. The composite has been fabricated with redmud as secondary reinforcement in banana fiber reinforced polyester (BFRP) using compression molding technique. The mechanical properties such as tensile, flexural and impact strength have been studied for different fiber weight percentage, ...

متن کامل

Reinforcement of Glass Ionomer Cement: Incorporating with Silk Fiber

The aim of this study was to synthesis of glass ionomer-silk fiber composite and to evaluate the effect of adding natural degummed silk fiber on the mechanical properties of glass ionomer cement (GIC). For this purpose, natural degummed silk fibers with 1 mm in length and 13-16 µm in diameter were added to the ceramic component of a commercial glass ionomer cement in 1, 3 and 5 wt. %. Compressi...

متن کامل

MECHANICAL CHARACTERIZATION AND ANALYSIS OF RANDOMLY DISTRIBUTED SHORT BANANA FIBER REINFORCED EPOXY COMPOSITES

Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping pr...

متن کامل

Composite Adhesive-Bonded Joint Reinforcement by Incorporation of Nano-Alumina Particles

Adhesive bonding technology is being used in a variety of modern industries, including the automotive, aerospace, maritime, construction, defense and so on. On the other side, polymeric nano - composites attracted both academic and industrial interests in the past decades. The scope of this paper is experimental investigation on the effects of the addition of Alpha-alumina nanoparticles to the ...

متن کامل

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017